Urea-inducible Egr-1 transcription in renal inner medullary collecting duct (mIMCD3) cells is mediated by extracellular signal-regulated kinase activation.
نویسنده
چکیده
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
منابع مشابه
Ras signaling in the inner medullary cell response to urea and NaCl.
The small guanine nucleotide-binding protein Ras, activated by peptide mitogens and other stimuli, regulates downstream signaling events to influence transcription. The role of Ras in solute signaling to gene regulation was investigated in the murine inner medullary collecting duct (mIMCD3) cell line. Urea treatment (100-200 mM), but not sham treatment, increased Ras activation 124% at 2 min; t...
متن کاملUrea Signaling in Cultured Murine Inner Medullary Collecting Duct (mIMCD3) Cells Involves Protein Kinase C, Inositol 1,4,5-Trisphosphate (IP
Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate–early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1 . In the present study, the proximal 1.2 kb of the murine Egr-1 5 9 -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected int...
متن کاملUrea signalling to immediate-early gene transcription in renal medullary cells requires transactivation of the epidermal growth factor receptor.
Signalling by physiological levels of urea (e.g. 200 mM) in cells of the mammalian renal medulla is reminiscent of activation of a receptor tyrosine kinase. The epidermal growth factor (EGF) receptor may be transactivated by a variety of G-protein-coupled receptors, primarily through metalloproteinase-dependent cleavage of a membrane-anchored EGF precursor. In the murine inner medullary collect...
متن کاملUrea signaling in cultured murine inner medullary collecting duct (mIMCD3) cells involves protein kinase C, inositol 1,4,5-trisphosphate (IP3), and a putative receptor tyrosine kinase.
Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate-early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1. In the present study, the proximal 1.2 kb of the murine Egr-1 5' -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected into ...
متن کاملUrea activates ribosomal S6 kinase (RSK) in a MEK-dependent fashion in renal mIMCD3 cells.
Urea activates a characteristic subset of signaling pathways in a tissue-specific fashion, including transcription of immediate early genes through activation of the mitogen-activated protein kinase (MAPK), ERK (extracellular signal-regulated kinase), and activation of its transcription factor substrate, Elk-1. The ability of urea to activate the ERK effector and pivotal regulatory kinase, ribo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 20 شماره
صفحات -
تاریخ انتشار 1996